Scotton Lingerfield Primary School Mathematics Progression

Purpose of study

 of the beauty and power of mathematics, and a sense of enjoyment and curiosity about the subject

Aims

The national curriculum for mathematics aims to ensure that all pupils:
 and apply knowledge rapidly and accurately

- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions

 and other subjects.

 with earlier material should consolidate their understanding, including through additional practice, before moving on.

Key:	NC and DM Objectives	Objectives covered by teaching points above it	Objectives that will need extra input to ensure it is covered	SLS Additions	NCETM Spines	(Ready to Progress)

	EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Cardinality and Countin I know how to count objects, actions, and sounds. I know how to count beyond 10. know how to count beyond 20. I know how to count forwards and backwards up to 20.	I know how to count to and across 100, from any number, forwards and backwards. (1NPV-1)	1 know how to count in multiples of 2,3 and 5 , and in 10 from any number forwards and backwards.	I know how to count in multiples of 4, 8 and 50, and 100 from any number forwards and backwards. I know how to count forwards and backwards through zero in 1s.	I know how to count in multiples of $6,7,9,11,12$ and 25 , and 1000 from any number forwards and backwards. know how to count forwards and backwards through zero in a range of multiples.	1 know how to count in known multiples of 10,000 from any number forwards and backwards. I know how to count forwards and backwards through zero in powers of 10.	I know how to count in known multiples and 100,000 from any number forwards and backwards. I know how to count forwards and backwards through zero in powers of 10.
\sim -	EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6

Numeral meanings
Conservation: knowing that the number does not
change if things are rearranged

I know how to subitise.
I know how to link the number symbol with its cardinal number value.

Comparison
More than/less than
Identifying groups with the same number of things Comparing numbers and reasoning

Knowing one more than/one less than relationship between counting numbers

I know how to understand

 the 'one more than/one less than' relationship between numbers.I know the 'one more than/one less than' relationships betwee consecutive numbers.

I know how to compare

 numbers.Composition
Part-whole: identifying smaller numbers within a number

Inverse operations
A number can be partitioned into different pairs of numbers
counting the number of
objects in each category
and sorting the categories
by quantity. by quantity.

TP2:

I know that when comparing two sets of objects, one set can contain more, fewer or the same amount as the other.

TP3:
I know how to use the symbols <, > and = to express the relative sizes of two numbers I know how to ask and answer questions about totalling and comparing categorical data.

I know how to interpret simple pictograms, tally charts, block diagrams and simple tables.

I know how to compare

 lengths and heights.I know how to describe lengths and heights (e.g., long/short, longer/shorter, tall/short, double/half]

I know how to solve practical problems involving lengths and heights.

I know how to describe mass/weight [e.g., heavy/light, heavier than, lighter than], capacity and volume [e.g., full/empty, more than, less than, half, half full, quarter].

I know how to compare

 numbers using equal to, more than and less than. which addends (parts) are added or grouped does not change the sum (associative and commutative laws). choose the most efficient order in which to add them, including identifying two addends that make ten (combining).TP5 (progression also from 1.2, 1.3 and 1.4):

I know that we can add two numbers which bridge the tens boundary by using a 'make ten' strategy. I know how to compare numbers and expressions using $<,>$ and $=$.

I know how to compare lengths using <, > and =.

know how to orde

 lengths.
TP6:

I know that we can subtract across the tens boundary by subtracting through ten or subtracting from ten.

1 know how to identify and represent numbers that are presented using objects, pictures, and number lines.

TP2:

know that known addition facts can be used to calculate complements to 100.

I know how to apply my knowledge to add and subtract lengths and heights ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$)

I know how to measure the perimeter of simple 2-D shapes

TP3:
know that known strategies for addition and subtraction across the ten's boundary can be combined with unitising to count and calculate across the hundred's boundary in multiples of ten.

TP4:

know that knowledge of two-digit numbers can be extended to count and calculate across the hundred's boundary from/to any two-digit number in ones or tens. I know how to round any number to the nearest 10

I know how to identify and

 represent numbers that are presented using different representations.I know how to read and write numbers up to 1000 in numerals and words. (3NPV-2)

TP2:

I know that when multiples of 100 are added or subtracted, the sum or difference is always a multiple of 100 .

TP3:

I know that numbers over 1,000 have a structure that relates to their size. This means they can be ordered, composed, and decomposed.

TP4:
know that numbers can be rounded to simplify
calculations or to indicate
approximate sizes.
TP5:
I know that calculation approaches learnt for three-digit numbers can be applied to four-digit numbers.

TP6:
know that 1,000 can also be composed
multiplicatively from 500s, 250 s or 200 s, units that are commonly used in graphing and measures

I know how to identify and represent numbers that are presented using different representations.
know how to compare numbers using <, > and $=$.

I know how to order numbers in ascending and descending order.
know that understanding
of numbers composed of hundred thousands, ten thousands and one thousands can be supported by making links to numbers composed of hundreds, tens and ones.

TP2:
know that multiples of 1,000 up to 1,000,000 can be placed in the linear number system by drawing on knowledge of the place of numbers up to 1,000 in the linear number system.

TP3:
know that numbers can be ordered and compared using knowledge of their composition and of their place in the linear number system.

TP4:
know that calculation approaches for numbers up to 1,000 can be applied to multiples of 1,000 up to 1,000,000.

TP5 (progression from 1.24):
know that numbers can be rounded to simplify calculations or to indicate approximate sizes. know how to round decimals with 2 dp to the nearest whole number and to 1 dp .

o 1dp.

TP6:

know that known patterns can be used to divide 10,000 and 100,000 into two, four and five equal parts. These units are
know that seven-digit numbers can be written, read and ordered by identifying the number of millions, the number of thousands and the number of hundreds, tens and ones. know how to apply my nowledge of comparing umbers to compare the volume of cubes and cuboids, recording the results using $>$, < and =.

P3.

know that the digits in a
number indicate its
structure so it can be
composed and
decomposed.

TP4:
know that knowledge of crossing thousands boundaries can be used to work to and across millions boundaries.

TP5:
know that sometimes numbers are rounded as approximations to eliminate an unnecessary level of detail; rounded numbers are also used to give an estimate or average. At other times, precise readings are useful. know how to round any decimals to a required degree of accuracy. (6NPV-2)

I know how to apply my knowledge of estimating numbers to estimate the volume of cubes and cuboids.

TP6:

I know that fluent calculation requires the

A number can be partitioned into more than two numbers

Number bonds: knowing which pairs make a given number

I know how to explore the

 composition of numbers to 10.I know how to explore the composition of numbers to 20.

I know how to

 automatically recall number bonds for $0-5$ and some of 10.I know how to explore the composition of numbers to 10.

I know how to

automatically recall number bonds for 0-5 and some of 10.

Pattern

Continuing an $A B$ pattern

Copying an $A B$ pattern
Make own AB pattern Spotting an error in an $A B$ pattern

Identifying the unit of repeat

Continuing an $A B C$ pattern
Continuing a pattern which ends mid-unit

Making own ABB, $A B B C$
patterns

1.2 Introducing 'whole' and 'parts': part-partwhole (Progression from EYFS composition)	I know how to read and write numbers in numerals and words (2NPV-1)
TP1: I know that a 'whole can be represented by one object; if some of the whole object	I know how to recall and use addition and subtraction facts. (2AS-1)
is missing, it is not the whole.	I know how to add and subtract numbers, including adding ones or tens to a
I know that a whole object can be split into two or more parts.	two-digit number, two twodigit numbers, three onedigit numbers. (2AS-3 and 2AS-4)
TP3:	
I know 'whole' can be represented by a group of discrete objects.	knowledge of addition and subtraction to solve problems involving lengths and heights.
TP4:	
I know a whole group of objects can be composed of two or more parts.	1.12 Subtraction as difference (Progression from 1.7)
1.3 Composition of number: 0-5	TP1:
(Progression from EYFS composition)	I know that the difference compares the number of
TP1:	number of objects in another set or the
I know that numbers can be represented by how many objects are in a set.	difference between two measures.
	TP2:
TP2: I know that ordinal numbers indicate a single item or event, rather than a	I know that the difference is one of the structures of subtraction.
quantity.	TP3:
TP3:	I know that consecutive whole numbers have a
I know that each of the numbers one to five can be partitioned in different ways.	difference of one; consecutive odd/even numbers have a difference of two.
TP4: I know that each of the	TP4:

I know how to interpre
data using bar charts, pictograms and tables.

I know how to solve onestep and two-step questions [e.g., 'How many more?' and 'How many fewer?'] using information presented in scaled bar charts and pictograms and tables.
1.18 Composition and Calculation: three-digit numbers (Progression from 1.9)

TP1:

know that three-digit numbers can be composed additively from hundreds, tens and ones. This structure can be used to support additive calculation.

TP2:

know that each number on the 0 to 1000 number line has a unique position.
TP3:

I know that the smallest three-digit number is 100 , and the largest three-digit number is 999; the relative size of two three-digit numbers can be determined by examining the hundreds digit, then the tens digits, and then the ones digits, as necessary.

TP4:
I know that three-digit multiples of ten can be expressed multiplicatively and additively, in terms of tens or hundreds.

I know how to round any number to nearest 10, 100 and 1000.
know how to use rounding to check answers to calculations.

I know how to estimate the answer to a calculation.

I know how to interpret discrete and continuous data using appropriate graphical methods, including bar charts and time graphs.

I know how to solve comparison, sum and difference problems usin information presented in bar charts, pictograms, tables and other graphs.

1.23 Composition and

 calculation: tenthsknow that when one is
divided into ten equal parts, each part is one tenth of the whole.

TP2:

know that tenths can be expressed as decimal fractions; the number written '0.1' is one tenth; one is ten times the size of 0.1.

TP3:
know that we can count in tenths up to and beyond one.

TP4:
know that numbers with tenths can be composed
commonly used in graphing and measures.

I know how to compare numbers using <, > and =
know how to order numbers.
know how to round any number to nearest 10,000 and 100,000.
know how to use rounding to check answers to calculations.
know how to read and interpret information in tables, including timetables I know how to solve comparison, sum and difference problems using information presented in a line graph.
know how to complete information in tables, including timetables.

1.27 Negative numbers:

counting, comparing, and calculating

TP1:
know that positive and negative numbers can be used to represent change.

TP2:
know that our number system includes numbers that are less than zero; these are negative numbers. Numbers greater than zero are positive numbers.

TP3:

I know that the
negative/minus symbol (-) is placed before a numeral
flexibility to move between
mental and written methods according to the specific numbers in a calculation.
I know how to interpret data presented in pie charts and line graphs.
know how to use data in pie charts and line graphs to solve problems.

I know how to compare numbers using $<,>$ and $=$

know how to order

 numbers.know how to round any number to a required degree of accuracy.
know how to add and subtract any number using choosing the most efficient method for any given situation.

I know how to use estimation to check answers to calculations.

I know how to add and subtract numbers mentally including with mixed perations and large numbers.
know how to use rounding o check answers to calculations.
know how to apply my knowledge of addition, subtraction, and inverse relationships to solve missing number problems. And solve multi-step problems in context, deciding which operations and methods to use and why.

Spotting an error in an ABB

 patternSymbolising the unit structure

Generalising structures to another context or mode

Making a pattern which repeats around a circle

Making a pattern around a border with a fixed number of spaces

Pattern spotting around us number one to five can be partitioned into two parts; if we know one part, we can find the other.

TP6:
I know that the number given before is one less; the number given after is one more.

TP7:
I know that partitioning can be represented using a bar model.

I know how to identify and represent numbers that are presented using objects, pictures, and number lines. I know how to represent and use number bonds within 20.
(1AS-1)
know how to identify if a number between one and ten is closer to one or ten. (1NPV-2)

1.4 Composition of

 numbers 6-10 (Progression from EYFS composition)TP1:
I know that number six to nine are composed of 'five and a bit'. Ten is composed of five and five.

TP2:
I know that six, seven, eight and nine lie between five and ten on a number line
to compare data.

I know how to apply my

 knowledge of addition and subtraction to solve problems involving lengths and heights.
1.13 Addition and

 subtraction: two-digit and single digit numbers (Progression from 1.8, 1.9 and 1.10)TP1:
I know that knowledge of the number line, and quantity values of numbers, can be applied to
add/subtract one to/from a given two-digit number. TP2:
I know that known facts for the numbers within ten can be applied to
addition/subtraction of a single-digit number to/from a two-digit number.

TP3:

I know that knowledge of numbers which sum to ten can be applied to the addition of a single-digit number and a two-digit number that sum to a multiple of ten, or subtraction of a single-digit number from a multiple of ten.

TP4:
I know that known strategies for addition or subtraction bridging ten can be applied to addition or subtraction bridging a multiple of ten. and strategies for addition and subtraction within and across ten, and within and across 100, can be used to support additive calculation within 1,000.

TP6:

I know that familiar counting sequences can be extended up to 1000 I know how to round any number to the nearest 100

I know how to identify and

 represent numbers that are presented using different representations.I know how to read and write numbers up to 1000 in numerals and words.

1.19 Securing mental

 strategies: Calculation up to 999 (Progression from 1.15)TP1:
know that known
partitioning strategies for adding two-digit numbers within 100 can be extended to the mental addition of two-digit numbers that bridge 100, and addition of three-digit numbers.

TP2:

I know that transforming addition calculations into equivalent calculations can support efficient mental strategies.

TP3:
know that subtraction calculations can be solved using a 'finding the difference' strategy; this
additively and
multiplicatively

TP5:

know that known facts and strategies, including column algorithms, can be applied to calculations for numbers with tenths.

TP6:

know that numbers with tenths can be rounded to the nearest whole number by examining the value of the tenths digit.

I know how to round

 decimals with 1dp to the nearest whole number. (4NPV-2)I know how to add and subtract numbers with up to 4-digits, using compact column method.
know how to apply my knowledge of addition, subtraction and inverse relationships to solve missing number problems.
1.24 Composition and calculation: hundredths and thousandths

TP1:
I know that when one is divided into 100 equal parts, each part is one hundredth of the whole When one tenth of a whole is divided into ten equal parts, each part is one hundredth of the whole.

TP2:

know that hundredths can be expressed as decimal fractions; the number written ' 0.01 ' is one hundredth; one is one
to indicate that the value is
a negative number.
TP4:
know that negative numbers can be shown on horizontal scales; numbers to the left of zero are negative (less than zero) and numbers to the right of zero are positive (greater than zero). The larger the value of the numeral after the negative/minus symbol, the further the number is from zero

TP5:
know that knowledge of the positions of positive and negative numbers in the number system can be used to calculate intervals across zero.

TP6:
know that negative numbers are used in coordinate and graphing contexts.

I know how to read and

 interpret information in tables, including timetablesknow how to solve comparison, sum and difference problems using information presented in a line graph

know how to complete

 information in tables,including timetables.

1.28 Common

structures and the part-part-whole relationship (Progression from 1.25)
1.31 Problems with two unknowns (Progression from 1.28)

TP1:

I know that problems with two unknowns can have one solution or more than one solution (or no solution). A relationship between the two unknowns can be described in different ways, including additively and multiplicatively.

TP2:

know that model drawing can be used to expose the structure of problems with two unknowns.

TP3:

I know that a problem with two unknowns has only one solution if the sum of the two unknowns and the difference between them is given ('sum-and-difference problems') or if the sum of the two unknowns and a multiplicative relationship between them is given ('sum-and-multiple problems').

TP4:
I know that other problems with two unknowns have only one solution.

TP5:

I know that some problems with two unknowns can't easily be solved using model drawing but can be solved by a 'trial-andimprovement' approach; these problems may have one solution, several solutions or an infinite number of solutions.

		I know numbers that can be made of groups of two are even; numbers that can't be made of two groups are odd. TP4: I know that the numbers six to ten can be partitioned in different ways. TP5: I know that the numbers six to ten can be partitioned into two parts; if we know one part, we can find the other. I know how to identify and represent numbers that are presented using objects, pictures, and number lines. I know how to represent and use number bonds within 20. (1AS-1) 1.5 Additive structures: introduction to aggregation and partitioning (Progression from EYFS composition) TP1: I know that combining two or more parts to make a whole is called aggregation; the addition symbol can be used for aggregation. TP2: I know that the equals symbol can be used to show equivalence between the whole and the sum of the parts. TP3: I know that each addend represents a part, and

I know how to apply my knowledge of addition and subtraction to solve problems involving lengths

 and heights.
1.14 Addition and subtraction: two-digit

 numbers and multiples of ten (Progression from 1.5, 1.6 and 1.7)TP1:
I know that when finding ten more or ten less than any two-digit number, the ones digit does not change. TP2: I know that when ten is added or subtracted to/from a two-digit number, the tens digit changes and the ones digit stay the same. number facts within ten can be applied to adding or subtracting multiples of ten to/from a two-digit number.

TP4:
I know that two-digit numbers can be partitioned in different ways. I know how to find different I know how to find different
combinations of coins that combinations of coins that
equal the same amounts of money.

I know how to apply my knowledge of addition and subtraction to solve problems involving lengths and heights.
1.15 Addition: two-digit and two-digit numbers
can be thought of as 'add

TP4:
I know that the order of addition and subtraction steps in a multi-step calculation can be chosen or manipulated such as to simplify the arithmetic.

I know how to identify and represent numbers that are presented using different representations.

I know how to add and subtract numbers mentally including adding ones, tens and hundreds to a 3-digit number.

I know how to read and write numbers up to 1000 in numerals and words. (3NPV-2)

I know how to apply my knowledge of addition, subtraction and inverse relationships to solve missing number problems. (3AS-3)

1.20 Algorithms:

column addition
(Progression from 1.15)
TP1:
know that any numbers
can be added togethe using an algorithm called 'column addition'.

TP2:
I know that the digits of the addends must be aligned correctly before the algorithm is applied.

TP3:
hundred times the size of
$0.01 ; 0.1$ is ten times the size of 0.01 .

TP3:

I know that we can count in hundredths up to and beyond one.

TP4

know that numbers with hundredths can be
composed additively and multiplicatively

TP5:

know that numbers with tenths and hundredths are commonly used in
measurement, scales and graphing contexts.

TP6:

know that known facts and strategies, including column algorithms, can be applied to calculations for numbers with hundredths; the same approaches can be used for numbers with hundredths as are used for numbers with tenths

TP7:
I know that numbers with hundredths can be rounded to the nearest tenth by examining the value of the hundredths digit or to the nearest whole number by examining the value of the tenths digit.

TP8:

know that when one is divided into 1,000 equal parts, each part is one thousandth of the whole. Knowledge and strategies for numbers with tenths and hundredths can be applied to numbers with

I know that mathematical relationships encountered at primary level are either additive or multiplicative; both of these can be observed within the structure of part-partwhole relationships.

P2:

know that problems in many different contexts can be solved by adding together the parts to find the whole. Different strategies can be used to calculate the whole, but the structure of the problem remains the same.
I know how to measure perimeter of composite rectilinear shapes $(\mathrm{cm} / \mathrm{m})$
know how to apply my knowledge of addition to calculate the perimeter of composite rectilinear shapes (cm / m).

TP3.

know that if the value of the whole is known, along with the values of all but one of the parts, the value of the missing part can be calculated. Different strategies can be used to alculate the missing part, but the structure of the problem remains the same.

P4:

know that problems in many different contexts have the 'missing-part' structure.
know how to identify, compare and estimate acute, obtuse and reflex angles.
(5G-1)

know how to add and

 subtract any number using choosing the most efficien method for any given situation.know how to find pairs of numbers that satisfy an equation with 2 unknowns. (6AS/MD-4)
know how to enumerate possibilities of combinations of two variables.
know how to express missing number problems algebraically.
know how to use simple formulae.
know how to generate and describe linear number sequences.

I know how to apply my

 knowledge of addition, subtraction, and invers relationships to solve missing number problems. And solve multi-step problems in context, deciding which operations and methods to use and why.| | | these are combined to form the whole/sum.
 TP4:
 I know that breaking a whole down into two or more parts is called partitioning.
 I know how to read, write, and interpret mathematical statements involving + , and $=$. (1AS-2)
 I know how to add and subtract one-digit and twodigit numbers to 20 , including zero.
 1.6 Additive structures: introduction to augmentation and reduction (Progression from EYFS composition)
 TP1:
 I know that an addition context described by a 'first..., then..., now...,' story is an example of augmentation.
 TP2:
 I know that a subtraction context described by a 'first..., then..., now...,' story is an example of reduction.
 TP3:
 I know that given any two parts of the story I can work out the third part.
 TP4:
 I know that addition and subtraction are and inverse operation.
 I know how to read, write, and interpret mathematical | (Progression from 1.5,
 1.6 and 1.7)
 TP1:
 I know that known strategies can be combined to add two multiples of ten to two single-digit numbers.
 TP2:
 I know that 2 two-digit numbers can be added by partitioning one or both into tens and ones.
 To be included in both TP's above:
 I know how to use rounding to check answers to calculations.
 I know how to estimate the answer to a calculation.
 I know how to add and subtract numbers mentally including adding ones or tens to a two-digit number, 2 two-digit numbers and 3 one-digit numbers.
 1.16 Subtraction: twodigit and two-digit numbers (Progression from 1.5, 1.6 and 1.7)
 TP1:
 I know that known strategies can be used to subtract a multiple of ten and a single-digit number from a two-digit number.
 TP2:
 I know that a two-digit number can be subtracted from a two-digit number by partitioning the subtrahend into tens and ones.
 To be included in both TPs' above: | I know that in column addition, the digits of the addends are added working from the least significant digit (on the right) to the most significant digit (on the left).
 TP4:
 I know that if any column sums to ten or greater, we must 'regroup'.
 TP5:
 I know that the numbers within each column should be added in the most efficient order
 I know how to add and subtract numbers with up to 3 -digits, using expanded column method.
 (3AS-2)
 I know how to apply my knowledge of addition, subtraction and inverse relationships to solve twostep problems in context, deciding which operations and methods to use and why.
 I know how to apply my knowledge of addition and subtraction to add and subtract amounts of money
 1.21 Algorithms:
 column subtraction (Progression from 1.16)
 TP1:
 I know that one number can be subtracted from another using an algorithm called 'column subtraction'; the digits of the minuend and subtrahend must be aligned correctly; the algorithm is applied | I know how to interpret discrete and continuous data using appropriate graphical methods, including bar charts and time graphs.
 I know how to solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs.
 I know how to recognise that hundredths arise when dividing an object into 100 equal parts.
 1.25 Addition and
 subtraction: money (Progression from 1.20 and 1.21)
 TP1:
 I know that one penny is one hundredth of a pound; conventions for expressing quantities of money are based on expressing numbers with tenths and hundredths.
 TP2:
 I know that equivalent calculation strategies for addition can be used to efficiently add commonly used prices.
 TP3:
 I know that the 'working forwards'/'finding the difference' strategy for subtraction is an efficient way to calculate the change due when paying in whole pounds or notes.
 TP4: | I know how to identify angles where they meet at a point, are on a straight line, half a turn and other multiples of 90 degrees.
 I know how to use the properties of rectangles to deduce related facts and find missing lengths and angles.
 I know how to add and subtract numbers with more than 5 -digits, using compact column method.
 I know how to apply my knowledge of addition, subtraction and inverse relationships to solve missing number problems.
 I know how to read and interpret information in tables, including timetables
 I know how to solve comparison, sum and difference problems using information presented in a line graph.
 I know how to complete information in tables, including timetables.
 I know how to apply my knowledge of addition, subtraction and angles to solve missing angle problems.
 1.29 Using equivalences and the compensation property to calculate (Progression from 1.12, 1.13 and 1.19)
 TP1:
 I know that if one addend is increased and the other is | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

		know that doubling the numbers 6-9 gives and even teen number. TP5: know that addition and subtraction facts within 10 can be applied to addition and subtraction within 20. know how to read and write numbers to 20 in numerals and words know how to add and subtract one-digit and twodigit numbers to 20, including zero. know how to recognise and know the value of different denominations of coins and notes. know how to recognise and use symbols for pounds (f) and pence (p). know how to describe time [e.g., quicker, slower, earlier, later] know how to sequence events in chronological order using language [e.g., before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening]. know how to recognise and use language relating to dates, including days of the week, weeks, months and years. am beginning to write the time (hours, minutes, seconds). know how to tell the time to the hour and half past the hour and draw the					

\square

	EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
$\frac{c}{0}$	Vocabulary: Doubling Halving Number patterns sharing	Vocabulary: Grouping Sharing	Vocabulary: Array Divide Dividend Division Division fact Divisor Equal groups of Factor Left over Multiplication Multiplication fact Multiple Multiply Product Quotient Times	Vocabulary: Factor Product	Vocabulary: Distributive law Short division Short multiplication	Vocabulary: Common factor Common multiple Cube number Divisible Factor pair Long division Long multiplication Prime factor Prime number Square number	Vocabulary: Factorise Prime factor
		2.1 Counting, unitising and coins (Progression from EYFS Cardinality and Counting) TP1: We can count efficiently by counting in groups of two. TP2: We can count efficiently by counting in groups of ten. TP3: We can count efficiently by counting in groups of five. TP4:	2.2 Structures: multiplication representing equal groups (Progression from 1.1 and 1.3) TP1: Objects can be grouped into equal or unequal groups. TP2: When describing equally grouped objects, the number of groups and the size of the groups must both be defined.	2.7 Times tables: 2,4 and 8, and the relationship between them (Progression from) TP1: Counting in multiples of four can be represented by the four times table. Adjacent multiples of four have a difference of four. Facts from the four times table can be used to solve multiplication and division problems with different structures. TP2:	2.10 Connecting multiplication and division, and the distributive law (Progression from) I know how to find factor pairs. TP1: Multiplication is commutative; division is not commutative. TP2: Multiplication is distributive: multiplication facts can be derived from related known facts by	2.18 Using equivalence to calculate TP1: For multiplication, if there is a multiplicative increase to one factor and a corresponding decrease to the other factor, the product stays the same. TP2: For division, if there is a multiplicative change to the dividend and a corresponding change to the divisor, the quotient stays the same.	2.23 Multiplication strategies for larger numbers and long multiplication (Progression from 2.19) I know how to identify common multiples, including LCM. I know how to identify common factors of a group of numbers, including HCF. I know how to identify any prime number. I know how to multiply any number by a 1-digit number using compact

					single-digit number. TP4: Any three-digit number can be divided by a single-digit number using the shortdivision algorithm. I know how to divide a 3digit number by a 1-digit number using short division, expressing remainders as whole number. 2.16 Multiplicative contexts: area and perimeter 1 TP1: Perimeter is the distance around the edge of a twodimensional (2D) shape. TP2: Perimeter is measured in units of length and can be calculated by adding together the lengths of the sides of a 2D shape. TP3: Multiplication can be used to calculate the perimeter of a regular polygon; when the perimeter is known, side-lengths can be calculated using division. TP4: Area is the measurement of the surface of a flat item. TP5: Area is measured in square units, such as square centimetres (cm^{2}) and square metres $\left(m^{2}\right)$. TP6: The area of a rectangle can be calculated using		of units of measure, using decimal notation up to three decimal places where appropriate. 2.30 Multiplicative contexts: area and perimeter 2 TP1: The area of a parallelogram can be calculated by multiplying the base by the perpendicular height; all parallelograms with the same base and perpendicular height will have the same area. TP2: The area of a triangle can be calculated by multiplying the base by the perpendicular height and then dividing by two. TP3: Shapes with the same area can have different perimeters; shapes with the same perimeter can have different areas. TP4: When a shape has been transformed by a scale factor, the perimeter is also transformed by the same scale factor. I know how to apply my knowledge of shape and ratio to solve problems involving similar shapes where the scale factor is known or can be found. I know how to apply my knowledge of shape and the four operations to calculate the area of parallelograms and triangles.

	EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
		I know how to count forwards and backwards in halves.	I know how to count forwards and backwards in quarters and thirds.	I know how to count forwards and backwards in tenths.	I know how to count forwards and backwards in hundredths.	I know how to count forwards and backwards in fifths, sixths and eighths.	I know how to count forwards and backwards in any fraction.
	EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Vocabulary: Half Parts of a whole	Vocabulary: Vocabulary: Equal grouping Denominator Equal part Equivalence Equal sharing Non-unit fraction Fraction Numerator One of two equal parts One of three equal parts quarter One third, two thirds Two halves Two quarters, three quarters Unit fraction Vinculum		Vocabulary: Sixths Sevenths Eighths Tenths	Vocabulary: Decimal equivalent Decimal fraction Decimal place Decimal point Hundredths Mixed number Proper fraction Proportion Simplify	Vocabulary: Percentage thousandths	Vocabulary: Ratio proportion
		3.0 Guidance on the teaching of fractions in Key Stage 1	3.0 Guidance on the teaching of fractions in Key Stage 1	3.1 Preparing for fraction: the part-whole relationship	3.5 Working across one whole: improper fractions and mixed numbers	3.7 Finding equivalent fractions and simplifying fractions	3.9 Multiplying fractions and dividing fraction by a whole number
		I know how to recognise and name $\frac{1}{2}$ and $\frac{1}{4}$ of an object, shape or quantity. I know how to find $\frac{1}{2}$ and $\frac{1}{4}$ of an object, shape or quantity.	I know how to recognise the equivalence of $\frac{1}{2}$ and $\frac{2}{4}$. I know how to recognise, name and write fractions $\frac{1}{2}$, $\frac{1}{4}, \frac{2}{4}$ and $\frac{3}{4}$ of a length, shape, set of objects or quantity.	TP1: Any element of a whole is a part; if a whole is defined, then a part of this whole can be defined. TP2: A whole can be divided into equal parts or unequal	I know how to recognise and write decimal equivalents to $\frac{1}{2}, \frac{1}{4}$ and $\frac{3}{4}$ I know how to use diagrams to recognise and find equivalent fractions whose denominators are multiples	I know how to recognise and use thousandths and relate them to tenths and hundredths. I know how to recognise and write decimal numbers as fractions containing thousandths.	I can recognise and convert a mixed number to an improper fraction and vice versa, using the concept of equivalent fractions. I know how to compare fractions, including improper fractions. $6 \mathrm{~F}-2$ and $6 \mathrm{~F}-3$

EYFS

Shape and Space

Developing special awareness: experiencing different viewpoints

Developing special vocabulary

Representing special relationships

Shape awareness: developing shape awareness through construction

Identifying similarities between shapes

Showing awareness of properties of shapes

Describing properties of shape

Developing an awareness of relationships between shapes

I know how to select, rotate and manipulate shapes to develop special reasoning skills

I know how to compose and decompose shapes

Measures

Recognising attributes
Comparing amounts of continuous quantities

Showing awareness of comparison in estimating and predicting

Comparing indirectly

Year 1
 Year 2

I know how to tell the time to the hour and half past the hour and draw the hands on a clock face to show these times.

I am beginning to write the time (hours, minutes, seconds).

I know how to describe position.

I know how to describe direction and movement, including half, quarter and three-quarter turns.

I know how to measure and begin to record mass, capacity and volume.

I know how to recognise and use language relating to dates, including days of the week, weeks, months and years.

I know how to describe time [e.g., quicker, slower, earlier, later]
I know how to sequence events in chronological order using language [e.g., before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening].

I know how to identify common 2D and 3D shapes, including: 2D shapes [e.g., rectangles (including squares), circles and triangles], 3D shapes [e.g., cuboids (including cubes), pyramids and spheres]. (1G-1)

I know how to use mathematical vocabulary to describe position.

I know how to use mathematical vocabulary to describe direction and movement in a straight line.
know how to distinguish between rotation as a turn and in terms of right angles for quarter, half and threequarter turns (clockwise and anti-clockwise).

I know how to choose and use appropriate standard units to measure capacity $(1 / \mathrm{ml})$ to the nearest appropriate unit, using measuring vessels.

I know how to compare mass, volume and capacity, recording the results using $>$, < and =

I know how to order mass, volume and capacity.
know how to estimate capacity (litres/ml) to the nearest appropriate unit.

I know how to apply my knowledge of addition and subtraction to solve problems involving capacity, volume and mass.

I know how to identify and describe the properties of 2D shapes, including the number of sides and line symmetry in a vertical line. (2G-1)

Year 3

I know how to measure and record volume and capacity ($1 / \mathrm{ml}$).

I know how to apply my knowledge of comparing numbers to compare volume and capacity, recording the results using $>$, < and $=$.

I know how to apply my knowledge of addition and subtraction to add and subtract volume and capacity ($1 / \mathrm{ml}$).

I know how to recognise that angles are a property of shape or a description of a turn, identify right angles and recognise that two right angles make a half turn, three make three quarters of a turn and four a complete turn.

I know how to identify whether angles are greater than or less than a right angle.
(3G-1)
know how to identify and describe the properties of 2D shapes including horizontal, vertical, parallel and perpendicular lines.

I know how to identify and describe 3D shapes in different orientations.
know how to draw 2-D
shapes
(3G-2)
l know how to make 3-D shapes using modelling materials

Year 4

know how to describe positions on a 2-D grid as coordinates in the first quadrant.

I know how to plot specified points and draw sides to complete a given polygon.
I know how to describe movements between positions as translations of a given unit to the left/right and up/down.

I know how to convert between kilometres and metres.

I know how to tell the time on both analogue and digital 12 and 24-hour clocks.

I know how to write the time from an analogue and digital 12 and 24 -hour clocks.
know how to convert from hours to minutes; minutes to seconds; years to months; weeks to days

I know how to convert time between analogue and digital 12 and 24-hour clocks.

I know how to estimate, compare and calculate money in pounds and pence.

I know how to identify right angles and recognise how many right-angled turns you need to make between 1 and 2 turns.

Year 5

know how to identify and describe the position of a shape.

I know how to represent the position of a shape.
know how to estimate the area of irregular shapes.

I know how to apply my knowledge of comparing numbers to compare the area of squares and rectangles (cm 2, m 2). (5G-2)

I know how to represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed.

I know how to convert between kilometres, metres, centimetre and millimetre.

I know how to use equivalences between metric units and common imperial units such as inches.

I know how to use all four operations to solve problems involving length, using decimal notation including scaling.

I know how to convert between litres and millilitres, and grams and kilograms.

know how to use

 equivalences between metric units and common
Year 6

know how to solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate.
know how to solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate.

I know how to describe positions on the full coordinate grid (all four quadrants).

I know how to draw and translate simple shapes on the coordinate plane and reflect them in the axes.

I know how to convert between miles and kilometres.

I know how to solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate.

I know how to apply my knowledge of 3-D shapes to calculate, volume of cubes and cuboids using standard units, including centimetre cubed (cm 3) and cubic metres (m 3), and extending to other units such as mm and km .

I know how to identify angles where they meet at

